НТУ «Днепровская политехника» — соответствие Времени

ЧТО ТАКОЕ МИКРОПРОЦЕССОР, МИКРОКОНТРОЛЛЕР И
ПРОГРАММИРУЕМЫЙ ЛОГИЧЕСКИЙ КОНТРОЛЛЕР

Стремительное развитие электроники быстро меняет нашу жизнь, и мы замечаем это, прежде всего, в социальной сфере, сферах коммуникации (общения) и связи. Первое, что приходит на ум в этой связи, – это компьютеры, Интернет и сотовые телефоны. Мы свободны в поисках необходимой информации, имеем возможность выйти на связь с желаемым абонентом, невзирая на наше местоположение. Мы можем получать дистанционное образование и объединяться в группы по профессиональным, социальным или культурным интересам. Все это стало возможным в значительной мере благодаря появлению микропроцессора и созданию микропроцессорных систем.

А существуют ли другие проявления прогресса микроэлектроники, не такие заметные на первый взгляд, но играющие значительную роль в нашей жизни?

Да! микропроцессоры и микроконтроллеры широко применяются в бытовой технике, автомобильной электронике, аэрокосмической и военной отраслях и, конечно же, в промышленном производстве.

Эта статья раскрывает некоторые аспекты применения микропроцессорных систем в технике и промышленности. Если дальнейший текст покажется вам слишком тяжелым и непонятным, рекомендуем предварительно ознакомиться со статьей «Основы информатики. Компоненты микропроцессорных систем».

Итак:

  • Что такое микропроцессор?
  • Что такое микроконтроллер? Каковы его особенности?
  • Где используются микроконтроллеры?
  • Чем микроконтроллер отличается от микропроцессора?
  • Что такое сигнальный процессор?
  • Что такое программируемый логический контроллер (ПЛК)? Как он построен?
  • Как программируют ПЛК?

Вы уже наверняка знаете, что любой компьютер – это машина для обработки информации, не взирая на то, какую конкретно задачу он выполняет. Центральным элементом компьютера является микропроцессор. Если спросить у ученика средней школы: – Что такое микропроцессор?, – то, скорее всего, получите ответ «Микропроцессор – это сердце компьютера».

Микропроцессор – это микроэлектронное программируемое устройство, предназначенное для обработки информации и управления процессами обмена этой информацией в составе микропроцессорной системы (компьютера).

Почему «микроэлектронное»? Потому что микропроцессоры производятся с помощью технологий современной микроэлектроники на основе полупроводникового кристалла. Информация в микропроцессорной системе передается электрическими импульсами. Конструктивно микропроцессор исполняется в виде одной микросхемы (иногда – нескольких). Микросхема состоит из пластикового или керамического корпуса, внутри которого размещается миниатюрная полупроводниковая подкладка (рис. 1). На этой подкладке лазером «начерчены» все электронные схемы микропроцессора. Входы и выходы схемы на подкладке соединены с металлическими выводами, расположенными по бокам или снизу корпуса микросхемы.

а) б)
Рис. 1. Интегральная микросхема (а) и ее внутреннее строение (б)

Почему микропроцессор – это «программируемое устройство»? Потому что микропроцессорные системы в общем случае универсальны, т. е. способны выполнять широкий круг задач по обработке информации. А на выполнение конкретной задачи микропроцессор «настраивают» с помощью программы – последовательного перечня машинных команд.

Обязательными компонентами микропроцессора являются регистры, арифметико-логическое устройство (АЛУ) и блок управления. Регистры предназначены для временного хранения данных, арифметико-логическое устройство – для выполнения арифметических и логических операций (т. е. для обработки данных). Блок управления отвечает за последовательное выполнение команд программы и правильное перенаправление потоков данных.

Микропроцессор не может работать сам по себе. Он является центральным звеном микропроцессорной системы, в которую также входят устройства постоянной и оперативной памяти, устройства ввода и вывода информации, накопители на жестких магнитных дисках (так называемые «винчестеры»), и т. д. Такие микропроцессорные системы собственно и называют компьютерами.

Персональный компьютер может иметь множество применений, однако это достаточно дорогое и громоздкое устройство. А как же наделить элементами интеллекта бытовую технику, автомобили, медицинские приборы? Как сделать их «умными»? Понятно, что в бытовой кондиционер нельзя вмонтировать системный блок обычного компьютера. Это повысит его стоимость в два-три раза. И в составе так называемого смарт-телевизора мы не найдем отдельного персонального компьютера в его обычном виде. Для автоматизации такого рода техники разработаны и изготавливаются специальные процессорные устройства – однокристальные микроконтроллеры (англ.: «Microcontroller»). Английское слово «control» обозначает «контролировать», «управлять». Таким образом, микроконтроллер – это специальный микропроцессор, предназначенный для автоматизации разнообразных устройств и управления их работой.

Итак, микроконтроллер – это специализированное микроэлектронное программируемое устройство, предназначенное для использования в управляющих узлах всевозможных технических изделий, системах передачи данных и системах управления технологическими процессами.

Микроконтроллеры применяют в бытовой технике, медицинских приборах, системах управления лифтами, телефонах, рациях и прочих средствах связи, электронных музыкальных инструментах и автомагнитолах, компьютерной периферии (клавиатурах, джойстиках, принтерах и т. п.), светофорах, автоматических воротах и шлагбаумах, интерактивных детских игрушках, автомобилях, локомотивах и самолетах, роботах и промышленных станках.


Рис. 2. Сферы применения микроконтроллеров.

Микроконтроллеры также широко используются в автомобильной электронике. Например, автомобиль «Peugeot 206» имеет на борту 27 микроконтроллеров, а в автомобилях высокого класса, таких как, например, «BMW» седьмой серии, используется более 60 микроконтроллеров. Они регулируют жесткость адаптивной подвески, управляют впрыском топлива, светотехникой, двигателями дворников, стеклоподъемников и зеркал заднего вида и т. п. (рис. 3).

Рис. 3. Использование микроконтроллеров в автомобильной электронике
(по материалам Microchip Technology).

Микроконтроллер, в отличие от микропроцессора, обычно имеет небольшую разрядность (8 – 16 бит) и богатый набор команд манипулирования отдельными битами. Битовые команды дают возможность управлять дискретным оборудованием (поднять/опустить шлагбаум, включить/выключить лампу, нагреватель, запустить/остановить двигатель, открыть/закрыть клапан, и проч.) Средства, обеспечивающие возможность оперировать отдельными битами, вводить и выводить дискретные сигналы называют «битовым процессором».

Еще одно из основных отличий микроконтроллера от микропроцессора заключается в том, что в составе микросхемы контроллера наличествуют все необходимые элементы для построения простой (а иногда – и достаточно сложной) системы управления. Так, внутри микроконтроллера есть память данных (оперативная память), память программ (постоянная память), генератор тактовых импульсов, таймеры, счетчики, параллельные и последовательные порты. Поэтому система минимальной конфигурации на основе микроконтроллера может состоять из блока питания, непосредственно микросхемы контроллера и нескольких пассивных элементов (резисторов, конденсаторов и кварцевого резонатора). И это фактически есть ничто иное, как одноплатный мини-компьютер на основе одной микросхемы, подходящий для встраивания в объект управления. Средняя стоимость системы минимальной конфигурации составляет несколько десятков долларов (сравните со средней стоимостью персонального компьютера).

Типовая архитектура микроконтроллера (рис. 4) содержит систем систему синхронизации и управления (1), арифметико-логическое устройство (2), регистры общего назначения (3), память данных (4) и память программ (5), порты (6), функциональные устройства (таймеры, счетчики, широтно-импульсные модуляторы, интерфейсы) и регистры для их настройки (7), рис. 4.


Рис. 4. Архитектура типичного микроконтроллера.

Программы для микроконтролеров создают в специальных интегрованных инструментальных средах (англ.: Integrated Development Environment, IDE) языками Асемблера (машинных команд) или C++.

Остается добавить, что ежегодно в мире продаются миллиарды микроконтроллеров, а обычный житель развитой страны в течение дня десятки раз соприкасается с микроконтроллерами, являющимися неотъемлемой частью современной технологичной окружающей среды.

Кроме микропроцессоров общего назначения и микроконтроллеров на рынке предлагаются так называемые сигнальные процессоры, специально предназначенные для обработки сигналов в режиме реального времени. Они используются в измерительных приборах, средствах связи, передачи и воспроизведения аудио- и видеопотоков, системах локации, космической и военной технике.

Сигнальные процессоры (англ.: Digital Signal Processor, DSP) характеризуются высокой разрядностью и быстродействием, имеют в системе команд специальные инструкции для реализации типовых алгоритмов цифровой обработки сигналов (ЦОС). Также на одном кристалле, кроме собственно процессорной части, реализуются аналогово-цифровые и цифро-аналоговые преобразователи. Аналого-Цифровой Преобразователь (АЦП) заменяет непрерывный входной сигнал соответствующим потоком цифровых данных (отсчетов). Далее эти данные обрабатываются процессорной частью, после чего с помощью Цифро-Аналогового Преобразователя (ЦАП) обработанные цифровые данные снова воспроизводятся в аналоговый сигнал. Таким способом сигнальный процессор может углублять четкость изображения, или, наоборот, размывать его, шифровать и дешифровать аудио- и видеопотоки, воспроизводить на экране виртуальную или дополненную реальность, отслеживать движущиеся объекты даже в условиях значительных помех и неполной входной информации.


ТИПЫ МИКРОПРОЦЕССОРОВ

Микропроцессоры общего назначения Микроконтроллеры Сигнальные процессоры Другие
(нейрочипы, секционные и гибридные процессоры)
Применяются:
для построения персональных компьютеров, серверов и многопроцессорных систем.
Применяются:
для реализации несложных функций управления и автоматизации.
Применяются:
для реализации сложных алгоритмов потоковой обработки данных в режиме реального времени.
Применяются:
для построения уникальных экспериментальных или специфических систем.
Особенности:
• высокая вычислительная производительность,
• высокая разрядность,
• универсальная архитектура.
Особенности:
• встроенная память программ и память данных,
• битовый процессор,
• таймеры, счетчики, порты, интерфейсы.
Особенности:
• высокая вычислительная производительность,
• команды для реализации типовых алгоритмов обработки сигналов,
• встроенные АЦП, ЦАП или медиа-интерфейсы.
Особенности:
• построение одного процессора на нескольких микросхемах,
• комбинация нескольких видов процессоров в одном изделии,
• специфическая архитектура

Еще один тип микропроцессорных устройств, которые за последние 30 – 40 лет заняли свою рыночную нишу – так называемые программируемые логические контроллеры.

Программируемый Логический Контроллер (ПЛК; англ.: Programmable Logic Controller или PLC) – это специализированная микропроцессорная система, которая используется для автоматизации технологических процессов и общепромышленных установок и комплексов (конвейеров, рольгангов, подъемных кранов, дробилок, мельниц, классификаторов, смесителей, прессов, упаковочных машин, робототехнических и гибких производственных комплексов, и т. п.)

Т. е. основная сфера применения ПЛК – это сфера промышленного производства. Однако они также используются для автоматизации зданий (контроль доступа в помещение, управление освещением, обогревом, вентиляцией и кондиционированием воздуха, управление лифтами, эскалаторами и т. п.) Также ПЛК могут применяться для создания микроклимата в тепличном хозяйстве, на птицефабриках, животноводческих фермах.

В общем случае ПЛК – это одноплатный мини-компьютер, построенный на основе однокристального микроконтроллера и расположенный в типовом корпусе размерами с кирпич. Также существуют модульные контроллеры (рис. 5). Ко входам ПЛК можно подсоединить кнопки, контакты джойстика, переключатели (т. е. органы управления), датчики и исполнительные механизмы (двигатели, лампы, нагревательные элементы, клапаны, вентили, актуаторы и т. п.) ПЛК циклически опрашивает входные сигналы (органы управления и датчики), выполняет программу пользователя (пересчитывает значения переменных) и выдает полученные выходные значения на исполнительные механизмы. Т. е. ПЛК циклически, раз за разом выполняет одну и ту же программу (программу пользователя).


Рис. 5. Программируемые логические контроллеры.

Кроме аппаратной унификации (использования стандартных размеров, уровней напряжений, видов сигналов), прорывному распространению ПЛК поспособстваволо то, что для них были разработаны интуитивные «общеинженерные» языки программирования. Теперь для разработки программы пользователя не обязательно приглашать программиста высокого класса. С этим может справиться (иногда – и лучше) и технолог, и электрик, и химик, и, конечно, специалист по автоматизации. А в случае сложных задач эти языки программирования стирают грань недопонимания между программистом и инженером. Они одинаково понятны и заказчику (инженеру) и исполнителю (программисту).

Таких языков программирования – 6 (5 стандартизированных), причем 4 из них – визуальные (т. е. программа вводится не в виде текста, а как набор соединенных друг с другом графических элементов (блоков), (рис. 6).


Рис. 6. Пример программы для ПЛК (анимация).

Обычно один и тот же контроллер можно программировать на нескольких языках на выбор пользователя. Для этого используют инструментальные программные комплексы, позволяющие не только разработать программу, но и отладить ее с помощью программной модели контроллера (на «симуляторе») или в режиме мониторинга (когда программу пользователя исполняет реальный контроллер, а на дисплее компьютера можно следить за его работой).

Аппаратная и программная унификация ПЛК дает возможность легко переходить на контроллеры другого производителя, переносить программы с одной платформы на другую. Это повышает гибкость систем автоматизации, способствует конкурентному инновационному развитию рынка.

Подробно изучить работу микропроцессорных систем, научиться разрабатывать и программировать прикладные мини-компьютеры и программируемые логические контроллеры для задач автоматизации можно на кафедре электропривода Национального горного университета.


Текст, иллюстрации: Яланский А.А.


Загрузить эту статью в формате pdf (1.2MБ)




Система Orphus
© 2006-2018 Інформація про сайт